Voltage-clamp analysis of sodium channels in wild-type and mutant Drosophila neurons.

نویسندگان

  • D K O'Dowd
  • R W Aldrich
چکیده

In this study we describe a preparation in which we examined directly, using tight-seal whole-cell recording, sodium currents from embryonic Drosophila neurons maintained in culture. Sodium currents were expressed in approximately 65% of the neurons prepared from wild-type Drosophila embryos when examined at room temperature, 24 hr after plating. While current density was low, other features of the sodium current in wild-type neurons, including the voltage sensitivity, steady-state inactivation, macroscopic time course, and TTX sensitivity were similar to those found in other excitable cells. Physiological and biochemical evidence has led to the suggestion that mutations in the nap, seizure, and tip-E loci of Drosophila may affect voltage-dependent sodium channels. There was no significant difference in the percentage of neurons expressing sodium currents in cultures prepared from embryos with mutations at the nap, sei or tip-E loci compared with wild-type cultures. Sodium currents recorded from napts appeared similar in all of the properties examined to those in wild-type cells. However, neuronal sodium current density was 40-60% lower in cultures prepared from both tip-E and seits1 embryos. The voltage dependence and gating properties of these sodium channels, as well as the TTX sensitivity, appear similar to wild type. These results indicate that both the tip-E and sei loci are important in regulation of sodium current density in embryonic neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature dependence of erythromelalgia mutation L858F in sodium channel Nav1.7

BACKGROUND The disabling chronic pain syndrome erythromelalgia (also termed erythermalgia) is characterized by attacks of burning pain in the extremities induced by warmth. Pharmacological treatment is often ineffective, but the pain can be alleviated by cooling of the limbs. Inherited erythromelalgia has recently been linked to mutations in the gene SCN9A, which encodes the voltage-gated sodiu...

متن کامل

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

Effects of ranolazine on wild-type and mutant hNav1.7 channels and on DRG neuron excitability

BACKGROUND A direct role of sodium channels in pain has recently been confirmed by establishing a monogenic link between SCN9A, the gene which encodes sodium channel Nav1.7, and pain disorders in humans, with gain-of-function mutations causing severe pain syndromes, and loss-of-function mutations causing congenital indifference to pain. Expression of sodium channel Nav1.8 in DRG neurons has als...

متن کامل

Point mutations in domain III of a Drosophila neuronal Na channel confer resistance to allethrin.

Voltage-gated sodium channels are the presumed site of action of pyrethroid insecticides and DDT. We screened several mutant sodium channel Drosophila lines for resistance to type I pyrethroids. In insecticidal bioassays the para(74) and para(DN7) fly lines showed greater than 4-fold resistance to allethrin relative to the allethrin sensitive Canton-S control line. The amino acid substitutions ...

متن کامل

Alterations in the expression and gating of Drosophila sodium channels by mutations in the para gene.

Mutations in the para gene specifically affect the expression of sodium currents in Drosophila. While 65% of wild-type embryonic neurons in culture express sodium currents, three distinct mutations in the para locus resulted in a decrease in the fraction of cells from which sodium currents could be recorded. This reduction was allele-dependent: macroscopic sodium currents were exhibited in 49% ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 8 10  شماره 

صفحات  -

تاریخ انتشار 1988